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E-08193 Bellaterra, Barcelona, Spain

E-mail: abyts@uel.br and elizalde@ieec.uab.es

Received 13 October 2005
Published 10 May 2006
Online at stacks.iop.org/JPhysA/39/6217

Abstract
We discuss methods of K-theory associated with hyperbolic orbifolds and valid
for the description of Chern morphisms and brane charges. Such methods of
K-theory are applied to compute D-brane charges, which are identified with
elements of Grothendick K-groups, and for manifolds with horizons, spaces
that naturally arise as the near-horizon of black brane geometries. In de Sitter
spaces, these solutions break supersymmetry, and do not describe universes
with zero cosmological constant. Here we pay attention to real hyperbolic
spaces, and we examine associated Chern classes and brane charges using
methods of K-theory and spectral theory of differential operators related to
real hyperbolic spaces. An argument in favour of hyperbolic geometries in
the treatment of the contributions to the vacuum persistence amplitude in QFT
is given. All those are to be viewed as the proper mathematical structures
underlying QFT with relevant backgrounds and boundary conditions in string
cosmology.

PACS numbers: 03.70.+k, 11.10.Kk, 11.25.−w, 98.90.−k

1. Introduction

In superstring theories, D-branes play a significant role. Methods of K-theory have been
applied to compute D-brane charges [1–3] which are identified with elements of Grothendick
K-groups [4–6]. The relevant description of the Ramond–Ramond charges in terms of
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equivariant K-theory has been demonstrated in [1, 7–9]. It leads to a formalism of fractional
branes pinned on the orbifold singularities which have components in the twisted sectors of
the closed strings. In string compactifications, de Sitter, anti de Sitter spaces and N-spheres
play an important role. These spaces also naturally arise as the near-horizon of black brane
geometries. Spheres and anti de Sitter spaces, as supergravity solutions, have been extensively
studied. But not many investigations have been carried out for de Sitter and hyperbolic spaces.
As for de Sitter spaces, the reasons are that these solutions break supersymmetry, and do not
describe universes with zero cosmological constant. In this paper, we pay attention to real
hyperbolic spaces. For the K-theory interpretation of brane charges, the Chern isomorphism
can be used. The rational cohomology ring H even(X, Q) over a manifold, X, has a natural
inner product, while the pairing K(X), associated with the cohomology ring K(X) ⊗Z Q,
is given by the index of the Dirac operator. We examine the Chern classes and charges of
branes using methods of K-theory and the spectral theory of differential operators related to
real hyperbolic spaces.

2. U (n)-Chern–Simons invariants

We consider real hyperbolic spaces which can arise as horizons in string compactifications
[10]. Let X = G/K be an irreducible rank 1 symmetric space of non-compact type. G will
thus be a connected non-compact simple split rank 1 Lie group with finite centre, and K ⊂ G is
a maximal compact subgroup. The objects of interest are the groups G = SO1(n, 1)(n ∈ Z+)

and K = SO(n). The corresponding symmetric space of non-compact type is the real
hyperbolic space X = Hn = SO1(n, 1)/SO(n) of sectional curvature −1. Let X� = �\G/K
be a real compact hyperbolic manifold. The fundamental group of X� acts by covering
transformations on X and gives rise to a discrete, co-compact subgroup � ⊂ G. Suppose that
χ is a one-dimensional representation of � factors through a representation of H 1(X; Z). It
can be shown that, for a unitary representation χ : � → U(n), the corresponding flat vector
bundle Eχ is topologically trivial (Eχ

∼= X ⊗ Cn) if and only if detχ |Tor1 : Tor1 → U(1) is the
trivial representation. Here Tor1 is the torsion part of H 1(M; Z) and det χ is a one-dimensional
representation of �, defined by det χ(γ ) := det(χ(γ )) for γ ∈ �.

A 3-form flux associates a phase with a Euclidean brane world-volume, X� , which is
given by the eta invariant, η(0), of the virtual bundle restricted to X� . We can express this
phase directly in terms of the Chern–Simons invariant. One can construct a vector bundle
Ẽχ over a certain 4-manifold, M, which is an extension of a flat complex vector bundle Eχ

over X� . The relevant cobordism group vanishes and, in fact, for a 3-manifold X� we can
find a 4-manifold M and extend the U(n) bundle such that the manifold M is spin. For
any extension Ãχ of a flat connection Aχ corresponding to χ , the second Chern character
ch2(Ẽχ )

(= − (1/8π2) Tr
(
FÃχ

∧ FÃχ

))
of Ẽχ can be expressed in terms of the first and

second Chern classes: ch2(Ẽχ ) = 1
2c1(Ẽχ )2 − c2(Ẽχ ). The Chern character and the Â-genus,

the usual polynomial related to the Riemannian curvature, �, are given by

ch(Ẽχ ) = rank Ẽχ + c1(Ẽχ ) + ch2(Ẽχ ) = dim χ + c1(Ẽχ ) + ch2(Ẽχ ),

Â(�M) = 1 − 1
24p1(�

M).
(1)

Here, p1(�
M) is the first Pontryagin class and �M is the Riemannian curvature of the

4-manifold M, which has a boundary ∂M = X� . Thus, we have

ch(Ẽχ )Â(�M) = (dim χ + c1(Ẽχ ) + ch2(Ẽχ ))

(
1 − 1

24
p1(�

M)

)

= dim χ + c1(Ẽχ ) + ch2(Ẽχ ) − dim χ

24
p1(�

M). (2)
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The integral over the manifold M takes the form∫
M

ch(Ẽχ )Â(�M) =
∫

M

ch2(Ẽχ ) − dim χ

24

∫
M

p1(�
M). (3)

The intersection form on M allows one to define the Chern–Simons invariant using c2
1. For the

Chern classes, we have c1(Eχ ) ∈ H 2(X�, Z), c2(Eχ ) ∈ H 4(X�, Z) and H 4(X�, Z) ∼= Z|�|.
The Dirac index is given by [11]

Index DÃχ
=

∫
M

ch(Ẽχ )Â(M) − 1

2
(η(0,Dχ ) + h(0,Dχ )), (4)

where h(0,Dχ ) is the dimension of the space of harmonic spinors on X� (h(0,Dχ ) =
dim Ker Dχ = multiplicity of the 0-eigenvalue of Dχ acting on X�); Dχ is a Dirac
operator on X� acting on spinors with coefficients in χ . The Chern–Simons action,
CSU(n)(Ãχ ) = −(1/8π2)

∫
M

Tr
(
FÃχ

∧ FÃχ

)
, can be derived from equation (4). Indeed,

Index DÃχ
= CS(Ãχ ) − dim χ

24

∫
M

p1(�
M) − 1

2
[η(0,Dχ ) + h(0,Dχ )]. (5)

There exists a Selberg-type (Shintani) zeta function Z(s,Dχ ) associated with a twisted
Dirac operator Dχ acting on oriented odd-dimensional real hyperbolic spaces. Z(s,Dχ )

is a meromorphic function of s ∈ C, and for �(s2) � 0 one has [12] log Z(0,Dχ ) =√−1πη(0,Dχ ). Thus, finally we get the U(n)-Chern–Simons invariant of an irreducible flat
connection on the real hyperbolic 3-manifolds:

CS(Ãχ ) − modulo(Z/2) = 1

2
[dim χη(0,D) − η(0,Dχ )]

= 1

2π
√−1

log

[
Z(0,D)dim χ

Z(0,Dχ )

]
. (6)

The value of the Chern–Simons functional on the space of connections at a critical point
can be regarded as a topological invariant of a pair (X�, χ). Note that using K-theory the
groups of fluxes can be computed, confirming our computation via Chern–Simons invariants
(see [13]). Indeed if the one-form flux is zero and c1(Eχ ) = 0 then the flux is measured by
c2(Eχ ) ∈ H 3(X�,U(1)). This group of three-form fluxes is generated by the two-dimensional
representation and is given by [13] H 4(X�, Z) = H 3(X�,U(1)) = Z|�|.

3. Brane charges

Before discussing the brane charge formula, we begin with some conventions which apply
throughout. Let X be an oriented manifold, and let H ∗(X) be the cohomology ring of X. The
Poincaré duality (a well-known result in differential topology) gives a canonical isomorphism

dX : Hj(X)
≈−→ Hj−p(X), for all p = 0, 1, . . . , n = dim X. (7)

Let f : Y → X be a continuous map from Y to X and m = dim Y . For all p � m − n there
is a linear map, called the Gysin homomorphism: f! : Hj(Y ) −→ Hj−(m−n)(X), which is
defined such that the sequence

Hp(Y )
dY−→ Hm−p(Y )

f∗−→ Hm−p(X)

Hm−p(X)
d

−1
X−→ Hp−(m−n)(X)Hp−(m−n)(X)

f!←− Hp(Y )

(8)

is commutative. Thus, f! = d
−1
X f∗dY , where f∗ is the natural push-forward map acting on

homology. As an example of that construction, let us assume that Y is an oriented vector
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bundle E over X, of fibre dimension �. The canonical projection map, π : E → X, and the
inclusion ι : X → E of the zero section induce maps on the homology with π∗ι∗ = Id. For all

j, we have the following isomorphisms: π! : Hj+�(E)
≈−→ Hj(X), ι! : Hj(X)

≈−→ Hj+�(E).

π! is the Gysin map; it can be associated with integration over the fibres of E → X. We have
π!ι! = Id, so that π! = (ι!)

−1. The map i! is called the Thom isomorphism of the oriented
vector bundle E. The particular example j = 0 is an important case of the Thom isomorphism.
For j = 0, a map H 0(X) → H�(E) and the image of 1 ∈ H 0(X) determine a cohomology
class ι!(1) ∈ H�(E), which is called the Thom class of E.

Let us consider U(n), a gauge bundle E on the brane. It has been shown that, as an element
of H ∗(X), the Ramond–Ramond charge associated with a D-brane wrapping a supersymmetric
cycle in spacetime f : Y ↪→ X with the Chan–Paton bundle E → Y , is given by

Q = ch(f!E) ∧ [Â(T X)]1/2. (9)

The map

ch : K(X) ⊗Z Q −→ H even(X, Q) ≡
⊕
n�0

H 2n(X, Q) (10)

is an isomorphism, and it can be extended to a ring isomorphism [15], ch : K∗(X) ⊗Z Q
≈−→

H ∗(X, Q), which maps K−1(X)⊗ZQ onto H odd(X, Q). One of the features of the topological
K-theory which makes it so useful in a variety of applications is the existence of the Chern
character isomorphism. It is also one of the key properties of cyclic cohomology. Note that the
rational cohomology ring H even(X, Q) has a natural inner product, while the pairing K(X),
associated with the cohomology ring K(X) ⊗Z Q, is given by the index of the Dirac operator.

The result (9) is in complete agreement with the fact that the D-brane charge is given
by f![E] ∈ K(X), and it gives an explicit formula for the brane charges in terms of the
Chern character isomorphism on K-theory. The Chern characters ch∗ (cohomology) and ch∗
(homology) preserve the ‘cap’ product ∩. It means that for every topological space X there is
a Z2-degree preserving commutative sequence [16, 17]:

K∗(X) ⊗ K∗(X)

⋂
−→ K∗(X)

ch∗−→ H∗(X, Q)

H∗(X, Q)

⋂
←− H ∗(X, Q) ⊗ H∗(X, Q)

ch∗ ⊗
ch∗←− K∗(X) ⊗ K∗(X).

(11)

For a finite CW-complex X,K∗(X) is a finitely generated Abelian group and ch∗ induces an
isomorphism K∗(X) ⊗Z Q −→ H∗(X, Q) of Z2-graded vector spaces over Q.

4. Methods of the algebraic K-theory of hyperbolic orbifolds

In this section, we discuss a computation of the K-groups of the twisted group C∗-algebras
which are relevant to the branes on hyperbolic orbifold singularities. The precise definitions
are somewhat technical (see, for example, [4, 18]) and thus some mathematical precision has
been skipped in the following discussion.

The main object here is the group KKG(A,B), which depends on a pair of graded
G-algebras, A and B. Let A and B be C∗-algebras (recall a C∗-algebra is a Banach algebra
with an involution satisfying ‖a∗‖ = ‖a‖2). A pair (E, π), where E is a Z/2Z-graded Hilbert
B-module acted upon by A through a *-homomorphism π : A → L(E) = End∗(E),∀a ∈ A,
the operator π(a) being of degree 0, π(A) ⊂ L(E)(0), will be called an (A,B)-bimodule.
Let E(A,B) be a triple (E, π, F ), where (E, π) is an (A,B)-module, F ∈ L(E) is a
homogeneous operator of degree 1, and ∀a ∈ A: (i) π(a)(F 2 − 1) ∈ K(E), and (ii)
[π(a), F ] ∈ K(E)(K(E) is the algebra of compact operators). A triple (E, π, F ) will be
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called degenerate if ∀a ∈ A : π(a)(F 2 − 1) = 0, [π(a), F ] = 0. Let D(A,B) be a set
of generated triples. An element E(A,B[0, 1]), where B[0, 1] is an algebra of continuous
functions in B on the interval [0, 1], will be called an homotopy in E(A,B). Let us assign a
direct sum in E(A,B) : (E, π, F ) ⊕ (E ′, π ′, F ′) = (E ⊕ E ′, π ⊕ π ′, F ⊕ F ′).

KK(A,B) is an Abelian group and its elements are homotopy classes of E(A,B). A
*-homomorphism, f : A1 → A2, transfers (A2, B)-modules into (A1, B)-modules, and
[19] f ∗ : E(A2, B) → E(A1, B), (E, π, f ) �→ (E, π◦f, F ), while a (∗)-homomorphism
g : B1 → B2 induces a homomorphism g∗ : E(A,B1) → E(A,B2), (E, π, f ) �→
(E ⊗g B2, π ⊗ 1, F ⊗ 1), where π ⊗ 1 : A → L(E ⊗g B2), (π ⊗ 1)(a)(e ⊗ b) = π(a)e ⊗ b.
The groups KK(A,B) define a homotopy invariant bifunctor from the category of separable
C∗-algebras into the category of Abelian groups. Abelian groups KK(A,B) depend
covariantly on the algebras A and B, in addition KK(C, B) = K0(B). Of interest to us
are the following relations:

KK∗(A := C, B) = K∗(B), KK∗(A,B := C) = K∗(A). (12)

Assuming that KKj(A,B) = KK(A,B(Rj )), one can determine the higher KK-groups.
Let 1A ∈ KK(A,A) (KK(A,A) is a ring with unit) denote the triple class (A, ιA, 0),

where A(1) = A,A(0) = 0 and ιA : A → K(A) ⊂ L(A), ιA(a)b = ab, a, b ∈ A.
Consider also the map τD : KK(A,B) ⊗ KK(A ⊗ D,B ⊗ D), τD(class(E, π, F )) =
class(E ⊗ D,π ⊗ 1D, F ⊗ 1). Finally we can determine Kasparov’s pairing

KK(A,D) × KK(D,B) −→ KK(A,B), (13)

which, denoting (x, y) �→ x ⊗D y, satisfies the following conditions.

(i) The Kasparov pairing depends covariantly on the algebra B and contravariantly on the
algebra A.

(ii) If f : D → E is a ∗-homomorphism, then f∗(x) ⊗E y = x ⊗D f ∗(y), x ∈
KK(A,D), y ∈ KK(E,B).

(iii) Associative property: (z ⊗D y) ⊗E z = x ⊗D (y⊗)Ez,∀x ∈ KK(A,D), y ∈
KK(D,E), z ∈ KK(E,B).

(iv) x ⊗B 1B = 1A ⊗ x = x, ∀x ∈ KK(A,B).
(v) τE(x ⊗B y) = τE(x) ⊗B⊗E τE(y), ∀x ∈ KK(A,B), ∀y ∈ KK(B,D).

Suppose that for two algebras, A and B, there are elements α ∈ KK(A ⊗ B, C), β ∈
KK(C, A⊗B), with the property that β⊗Aα = 1B ∈ KK(B,B), β⊗B α = 1A ∈ KK(A,A).

Then, the KK-duality isomorphisms between the K-theory (K-homology) of algebra A and
the K-homology (K-theory) of algebra B occur: K∗(A) ∼= K∗(B),K∗(A) ∼= K∗(B). In fact
the algebras A and B are Poincaré dual [18], but generally speaking these algebras are not
KK-equivalent.

We now review the concept of K-amenable groups following [20]. Let G be a connected
Lie group and K is a maximal compact subgroup. We also assume that dim (G/K) is even
and G/K admits a G-invariant SpinC structure. The G-invariant Dirac operator D := γ µ∂µ on
C/K is a first-order self-adjoint, elliptic differential operator acting on L2 sections of the Z2-
graded homogeneous bundle of spinors S. Let us consider a zeroth-order pseudo-differential
operator O = D(1 + D2)−1 acting on H = L2(G/K,S). Suppose that C0(G/K) acts on H by
multiplication of operators. G acts on C0(G/K) and H by left translation, and O is G-invariant.
Then, the set (O,H,X) defines a canonical Dirac element αG = KKG(C0(G/K), C). There
is a canonical Mishenko element αG ∈ KKG(C0(G/K), C) such that the following intersection
products occur:
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(i) αG ⊗C βG = 1C0(G/K) ∈ KKG(C0(G/K), C0(G/K)),
(ii) βG ⊗C0(G/K) αG = γG = KKG(C, C), where γG is an element in KKG(C, C).

(For a semisimple Lie group G or for G = Rn, a construction of the Mishchenko element
βG can be found in [20].) We assume the following definition: a Lie group G is said to be
K-amenable if γG = 1. The non-amenable groups SO(n, 1) and SU(n, 1) are K-amenable
[21, 22].

Note the result of the calculation given in [23–25]: K∗(C∗(Z, σ )) ∼= K∗(C∗(Zn)) ∼= K∗
(Tn), which holds for any group two-cocycle σ on Zn. This calculation leads to the twisted
group C∗-algebras C∗(Z, σ ) (noncommutative tori). Such generalization has been given for
K-groups of the twisted group C∗-algebras of uniform lattice in solvable groups [26]. Let �

be a uniform lattice in a solvable Lie group G. The following result generalized the result of
[26]. Let � be a lattice in a K-amenable Lie group G; then [20]

K∗(C∗(�, σ )) ∼= K∗+dim (C/K)(�\G/K, δ(Bσ )), (14)

where K∗+dim G(�\G, δ(Bσ )) denotes the twisted K-theory (see [27]) of a continuous trace
C∗-algebra Bσ with spectrum �\G, σ is any multiplier on �, while δ(Bσ ) ∈ H 3(�\G, Z)

denotes the Dixmier–Douady invariant of Bσ [28]. Let � be a lattice in a K-amenable Lie
group G. Then the following formulae hold [20]

K∗(C∗(�, σ )) ∼= K∗+dim G(C∗
r (�, σ )), (15)

K∗(C∗(�, σ )) ∼= K∗+dim G/K(�\G/K, δ(Bσ )). (16)

These formulae have been obtained with the help of K-amenability results [21] and the
stabilization theorem [26]. When � = �g is a fundamental group of a Riemannian surface
X� = �g of genus g > 0, the Dixmier–Douady class δ(Bσ ) is trivial and we get

K0(C
∗(�g, σ )) ∼= K0(�g) ∼= Z2 K1(C

∗(�g, σ )) ∼= K1(�g) ∼= Z2g , (17)

which hold for any multiplier σ on �σ .
Just some basics on the lower algebraic K-groups. Let X� be a real compact oriented

three-dimensional hyperbolic manifold. Its fundamental group � comes with maps to
PSL(2, C) ≡ SL(2, C)/{±Id}; therefore, in general, one gets a class in H3(GL(C)). The
following result holds [29–31] for a field F :

Kj(F) ∼= Hj(GL(j,F))/Hj (GL(j − 1,F). (18)

The group K3(F) is built out of K3(F) and the Bloch group B(F). Since we are looking
for H3(GL(2, •)), the homology invariant of a hyperbolic 3-manifold should live in the Bloch
group B(•). The following result confirmed that statement [32]: a real oriented finite-volume
hyperbolic 3-manifold X = X� has an invariant β(X) ∈ B(C). Actually β(X) ∈ B(F) for an
associated number field F(X). In fact, under the (normalized) Bloch regulator B(C) → C/Q,
the invariant β(X) goes to {(2/π) vol(X�) + 4π

√−1CS(X�)}. Let us assume that F(X�)

can be embedded in C as an imaginary quadratic extension of a totally real number field; then
CS(X�) is rational (conjecturably, CS(X) is irrational ifF(X)∩F(X) ⊂ R [33]). The volume
and the Chern–Simons invariants can be combined into a single complex invariant [34]. Taking
into account the Thurston classification of all three possible geometries, �n\Gn, this invariant
can be presented in the form exp

{⋃∞
�=1[(2/π) Vol(�n�\Gn�) + 4π

√−1CS(�n�\Gn�)]
}
.

To finish, if we adhere to the intuitive requirement that only irreducible manifolds have to
be taken into account (supersymmetry surviving arguments being in favour of this requirement
[10]), then the manifolds modelled on S2 × R, H2 × R have to be excluded from Thurston’s
list. There is only a finite number of manifolds of the form �\RN, �\SN , for any N [35].
It seems that in QFT the most important contribution to the vacuum persistence amplitude
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should be given by the hyperbolic geometry, the other geometries appearing only for a small
number of exceptions [36]. Indeed, many 3-manifolds are hyperbolic (according to a famous
theorem by Thurston [34]). For example, the complement of a knot in S3 admits a hyperbolic
structure unless it is a torus or a satellite knot. Moreover, from Mostow’s rigidity theorem
[37], any geometric invariant of a hyperbolic 3-manifold is a topological invariant.
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[10] Bytsenko A A, Guimarães M E X and Helayel-Neto J A 2004 Proc. Sci. WC2004 17
[11] Atiyah M F, Patodi V K and Singer I M 1975 Math. Proc. Camb. Phil. Soc. 77 43

Atiyah M F, Patodi V K and Singer I M 1975 Math. Proc. Camb. Phil. Soc. 78 405
Atiyah M F, Patodi V K and Singer I M 1976 Math. Proc. Camb. Phil. Soc. 79 71

[12] Moscovici H and Stanton R 1989 Invent. Math. 95 629
[13] de Boer J, Dijgraaf R, Hori K, Keurentjes A, Morgan J, Morrison D R and Sethi S 2002 Adv. Theor. Math. Phys.

4 995 (Preprint hep-th/0103170)
[14] Olsen K and Szabo R J 1999 Adv. Theor. Math. Phys. 3 889 (Preprint hep-th/9907140)
[15] Atiyah M F and Hirzebruch F 1962 Topology 1 25
[16] Switzer R M 1978 Algebraic Topology: An Introduction (Berlin: Springer)
[17] Reis R M G and Szabo R J 2005 Geometric K-homology of flat D-branes Preprint hep-th/0507043
[18] Connes A 1994 Noncommutative Geometry (New York: Academic)
[19] Kasparov G G 1988 Invent. Math. 91 147
[20] Carey A L, Hannabuss K C, Mathai V and McCann P 1998 Commun. Math. Phys. 190 629
[21] Kasparov G 1984 Sov. Math. Dokl. 29 256
[22] Julg P and Kasparov G 1995 J. Reine Angew. Math. 463 99
[23] Elliott G 1983 On the K-theory of the C∗-algebra generated by a projective representation of a torsion-free

discrete group Operator Algebras and Group Representations (London: Pitman) pp 157
[24] Bellissard J 1986 K-theory of C∗-algebras in Solid State Physics (Springer Lecture Notes in Physics vol 257)

p 99
[25] Connes A 1986 Publ. Math. IHES 62 257
[26] Packer J and Raeburn I 1989 Math. Proc. Camb. Phil. Soc. 106 293

Packer J and Raeburn I 1990 Math. Ann. 287 595
[27] Rosenberg J 1989 J. Aust. Math. Soc. 47 368
[28] Dixmier J and Douady A 1963 Bull. Soc. Math. France 91 227
[29] Suslin A 1984 J. Pure Appl. Algebra 34 301
[30] Suslin A 1984 Homology of GLn, characteristic classes, and Milnor K-theory Algebraic K-Theory, Number

Theory, Geometry and Analysis (Bielefeld, 1982) (Lecture Notes in Mathematics vol 1046) ed A Bak (Berlin:
Springer) p 357

[31] Suslin A 1990 Tr. Mat. Inst. Steklov. 183 180
[32] Neumann W D and Yang J 1995 Ens. Math. 41 281

Neumann W D and Yang J 1995 Electr. Res. Announcements Am. Math. Soc. 1 72

http://dx.doi.org/10.1007/s002200050793
http://www.arxiv.org/abs/hep-th$/$9901042
http://dx.doi.org/10.1016/S0550-3213(99)00535-0
http://www.arxiv.org/abs/hep-th$/$9902116
http://dx.doi.org/10.1016/S0550-3213(99)00270-9
http://www.arxiv.org/abs/hep-th$/$9812226
http://dx.doi.org/10.1007/BF01393895
http://www.arxiv.org/abs/hep-th$/$0103170
http://www.arxiv.org/abs/hep-th$/$9907140
http://dx.doi.org/10.1016/0040-9383(62)90094-0
http://dx.doi.org/10.1007/BF01404917
http://dx.doi.org/10.1007/s002200050255
http://dx.doi.org/10.1007/BF01446916
http://dx.doi.org/10.1016/0022-4049(84)90043-4
http://dx.doi.org/10.1090/S1079-6762-95-02003-8


6224 A A Bytsenko and E Elizalde

[33] Rosenberg J 1997 Recent progress in algebraic K-theory and its relationship with toplogy and analysis Mini-
Course for the Joint Summer Research Conf. on Algebraic K-Theory (Seattle, July 1997)

[34] Thurston W 1982 Bull. Am. Math. Soc. (NS) 6 357
[35] Wolf J A 1977 Spaces of Constant Curvature (Berkeley, CA: Publish or Perish)
[36] Besse A 1981 Geométrie Riemannianne Eu Dimension 4 (Séminaire Arthur Besse, 1978/1979) (Paris:
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